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ABSTRACT

Myokines are proteins that participate in various metabolic pathways 
released by skeletal muscle. They provide cross-talk between organs 
and muscles, induce muscle atrophy, improve muscle strength, induce 
muscle hypertrophy, induce glucose uptake, slow cancer progression, 
and reduce fat mass. Studies have examined the disease mechanisms 
that myokines may affect depending on the pathways they are 
involved in. In this review, myostatin, interleukin-6, interleukin-15, 
decorin, irisin, myonectin, and fibroblast growth factor 21 were 
examined as potential treatments. In addition, some concerns about 
myokines as therapeutics were listed.
Keywords: Decorin, IL-6, irisin, myokine, myonectin, myostatin.

Myokines are produced and released by the 
endocrine organ known as muscle. Communication 
between muscle and adipose tissue, the liver, the 
brain, and other organs is mediated by these 
myokines. They participate in autocrine and 
paracrine/endocrine regulation of metabolism 
in muscle via receptors in other tissues and 
organs such as adipose tissue, liver, and brain.[1,2] 
Myocytes synthesize and release them during 
muscle contracts.[2] Among a large number of 
myokines, the most studied are listed in Table 1.[3]

MYOKINES AS THERAPEUTICS
Myostatin

Myostatin is a member of the transforming 
growth factor-beta (TGF-b) superfamily. It is also 
known as growth differentiation factor 8 (GDF-8). 

Myostatin is a negative regulator of skeletal 
muscle development.[4]

In mice, myostatin deletion increases the 
number of satellite cells involved in muscle growth, 
resulting in improved muscle regeneration, skeletal 
mass hypertrophy, and decreased total adipose 
tissue.[5,6]

According to a study, the myostatin/myostatin 
precursor accumulates in sporadic inclusion body 
myositis muscles and is associated with amyloid-
beta (Ab) containing aggregates. The expressions 
of myostatin precursor protein and myostatin 
dimer are increased, and myostatin precursor 
protein binds Ab.[7] Based on these findings, a 
therapeutic approach to sporadic inclusion body 
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Table 1. Myokines and their actions in skeletal 
muscular tissue

Myokine Action

Myostatin Stops myoblast proliferation
Suppresses satellite cell activation
Induces muscle atrophy

IL-6 Enhances glucose uptake, oxidation of fatty acids
Increases insulin secretion
Decreases cachexia progress

IL-15 Anabolic effect
Increases mitochondrial activity
Decreases fat mass

Decorin Antagonist with myostatin
Restructuring muscle

Irisin Improves muscle strength
Induces muscle hypertrophy

Myonectin Induces nutrient storage in adipose tissue

FGF21 Energy metabolism
Enhances mitochondrial activity
Induces glucose uptake

IL: Interleukin; FGF21: Fibroblast growth factor 21.
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myositis could be myostatin/myostatin precursor 
reduction.[8]

Myostatin has an indirect effect on adipocytes 
indirectly.[9] It was found that a major reason for 
the reduction of body fat in myostatin-null mice 
was increased muscle mass. Myostatin-null mice 
develop significant muscle hypertrophy due to 
accelerated myogenesis and significant adipose 
tissue loss.[10-12] Cachexia is defined as a decrease 
in leptin, the “satiety hormone” secreted by 
adipocytes, in myostatin-deficient mice, although 
their food intake is not different from control 
mice.[12,13] Although there have not been many 
studies on the expression of myostatin in 
muscle cachexia, specifically as a biomarker and 
therapeutic target, it is regarded as an excellent 
research approach in the treatment of cachexia, 
especially when combined with decorin and 
leptin.[14]

Satellite cell activation is negatively regulated 
by myostatin strongly. Increased self-renewal and 
delayed expression of the differentiation gene 
(myogenin) result in an increase in the number of 
satellite cells in myostatin-deficient satellite cells. 
Myostatin may induce satellite cell quiescence by 
regulating G1 to S progression.[15]

Interleukin-6

Interleukin-6 (IL-6), a 21–28 kDa glycoprotein, 
is a pleiotropic prototypic cytokine (a four-helix 
bundle cytokine) that activates acute immune 
responses in muscle tissue infection and injury. 
It mediates both innate and adaptive immune 
responses.[16,17]

An in vitro study in mice lacking the skeletal 
muscle IL-6 gene revealed that this myokine is a 
crucial regulator of muscle hypertrophy mediated 
by satellite cells in normal muscle.[18]

It is obvious that lowering myokine levels 
can slow the progression of cachexia in cancer 
patients.[19] High plasma IL-6 levels are evident 
in patients with advanced or terminal cancer, 
which correlate with weight loss, anemia, and 
depression.[20] A clinical trial of tocilizumab, 
an IL-6 receptor inhibitor that blocks IL-6 
binding to its receptor, reduced plasma IL-6 
levels in patients with cancer cachexia without 
affecting tumor growth and improved muscle 
mass loss.[21-23] Potential side effects of interleukin 
suppression, such as IL-6, may impair a patient's 

immune response to infection and should be 
monitored.[24]

The role of IL-6 was found to be in metabolism 
rather than inflammation. IL-6 regulates energy 
metabolism. Mageriu et al.[8] considered that 
these findings may have similar implications 
in idiopathic inflammatory myopathy, and it is 
assumed that more research is needed to define 
the role of IL-6 in this pathology.

A study showed that IL-6-/- transgenic mouse 
treated with rabbit myosin-induced idiopathic 
inflammatory myopathies had no inflammation 
in myofibers, a complete absence of necrosis 
and leukocyte infiltration, and no regeneration 
of myofibers. The muscle infiltrates found in 
the muscle were macrophages. The conclusion 
was that a lack of IL-6 prevented chemotactic 
inhibition of monocyte infiltration into muscle.[25] 
Blocking the IL-6 signaling pathway could be a 
potential therapy for idiopathic inflammatory 
myopathies. This blockage is also approved for 
the treatment of rheumatoid arthritis.[26]

Bilgic et al.[27] observed a correlation between 
serum IL-6 levels, a candidate biomarker for adult 
and juvenile dermatomyositis, and disease activity 
in dermatomyositis patients. Another study 
showed that IL-6 has antineoplastic properties 
by targeting immune cells (Natural killer cells), 
providing another putative mechanism of action.[28]

Interleukin-15

Interleukin-15 (IL-15) is a myokine released 
from skeletal muscle following exercise. 
It has an anabolic effect on muscle protein 
metabolism.[29] Some studies on the oxidative 
and fatigue properties of muscle have revealed 
possible alternative pathways for these topics.[30,31] 

IL-15 exerts many metabolic actions, inhibiting 
preadipocyte differentiation and lipogenesis as 
part of muscle-adipose crosstalk, increasing 
glucose uptake and fat oxidation in muscle tissue, 
and stimulating lipolysis.[32]

Changes in plasma IL-15 levels after resistance 
training yielded inconsistent results. Although a 
significant increase was observed in one study, no 
change was observed in another.[33,34]

IL-15 has been shown to reduce white 
adipocyte size and serum leptin levels in male 
mice, whereas downregulating anti-inflammatory 
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and antineoplastic adiponectin can stimulate the 
production of visceral obesity.[35]

Decreased plasma IL-15 levels are 
associated with sarcopenia.[36] The elevated 
serum IL-15 levels of centenarians suggest that 
high expression of IL-15 confers protection 
against frailty and age-related diseases.[37,38] 
Overexpression of IL-15 increases muscle insulin 
sensitivity, improves mitochondrial function and 
fatty acid oxidation and protects against obesity 
and insulin resistance.[39-41] Hence, IL-15 was 
considered an interesting myokine for treating 
metabolic diseases such as type 2 diabetes (T2D) 
and obesity.[42] While there are studies indicating 
that IL-15 may be a potential treatment for 
sarcopenia and obesity, there are currently no 
results confirming the effects of IL-15 regulation 
on sarcopenic obesity. Therefore, it has been 
reported that additional scientific and clinical 
studies are required to better understand whether 
IL-15 is a vital biomarker and therapeutic role for 
sarcopenic obesity.[43]

In a study of polymyositis patients and 
experimentally in a polymyositis rat model, it was 
reported that the levels of CD163 macrophages 
were significantly reduced after treatment with 
the anti-IL-15 antibody, indicating that IL-15 is 
closely linked to CD163 macrophages and has a 
significant effect on the pathogenesis of idiopathic 
myositis. It has also been demonstrated that 
expression levels of matrix metallopeptidase 9 
(MMP9), which has been proven to be involved in 
the inflammatory process of muscle degeneration, 
can be regulated by IL-15.[44] Researchers reasoned 
that IL-15, a key regulator of polymyositis, is 
a promising therapeutic target and potential 
treatment for polymyositis.[8]

Decorin

Decorin is a small leucine-rich proteoglycan. 
It is a component of the extracellular matrix in 
many tissues and is released by myotubes.[45,46] 
Decorin is known to suppress tumorigenesis 
and angiogenesis and prevent the formation of 
metastatic lesions in vivo and in vitro in various 
tumor models.[46] Therefore, decorin is a novel 
therapeutic candidate for the treatment of patients 
with solid malignancies.[47]

Decorin binds directly to myostatin, a potent 
muscle growth inhibitor, and plays a role 

in muscle restructuring during hypertrophy 
by acting as an antagonist to myostatin.[12,45] 
According to this information, it has been 
said that this myokine can be considered a 
therapeutic target together with myostatin in 
cachexia and can modulate the preservation of 
muscle mass.[3]

Based on the functions of decorin and 
myostatin being upregulated in inclusion body 
myositis, it has been reported that decorin can 
be thought to be downregulated in idiopathic 
inflammatory myopathies. It is also thought that 
it can be used as a future therapeutic target in 
myositis to stimulate muscle regeneration and 
muscle wasting-related diseases.[8,43]

Irisin

Irisin is a myokine cleaved from the fibronectin 
type III domain-containing protein 5 (FNDC5) 
precursor protein induced by peroxisome 
proliferator-activated receptor gamma coactivator 
1-alpha (PPARGC1A) overexpression. It was 
discovered in 2012.[48] In humans, skeletal muscle 
is the primary source of irisin, which is also 
secreted by white adipose tissue, the brain, and 
other organs.[49]

Irisin promotes the browning of white fat by 
inducing uncoupling protein 1 (Ucp1) expression, 
thereby increasing thermogenesis and glucose 
homeostasis. Muscle-derived irisin exhibits 
beneficial metabolic effects by increasing energy 
expenditure, causing minor weight loss, and 
improving metabolic parameters such as insulin 
signaling and sensitivity.[48]

Irisin treatment can induce skeletal muscle 
hypertrophy, improve muscle strength, and 
reduce necrosis and tissue fibrosis in a murine 
dystrophy model, implying that irisin may 
have potential therapeutic value in muscular 
dystrophy.[50] Several studies have demonstrated 
that serum irisin levels can be used as a potential 
biomarker of muscle dysfunction to help predict 
the development of sarcopenia and provide new 
strategies for monitoring age-related muscle 
changes.[51-53]

Since circulating irisin levels increase in obese 
individuals and decrease in T2D patients, irisin 
is thought to be important in the development of 
obesity and T2D.[43,54]
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In a study, irisin was shown to reduce breast 
cancer aggressiveness while also increasing 
chemotherapy.[55]

The effect of irisin on brain-derived 
neurotrophic factor-mediated hippocampal 
neurogenesis was replicated with peripheral 
irisin administration. Thus, it is recognized 
that the possible effects of exercise-induced 
peripheral irisin on neurogenesis are 
significant.[56] Although clinical studies have 
shown a transient increase in irisin levels 
following acute exercise, most studies have 
yielded conflicting results regarding the effects 
of chronic exercise training on irisin levels. It was 
concluded that the level of clinical evidence that 
exercise-induced irisin production from skeletal 
muscle directly contributes to neuropsychiatric 
function in the brain is low, as there is little 
clinical evidence that it has beneficial effects on 
neuropsychiatric function.[57,58]

Myonectin

Myonectin is a protein that belongs to the 
C1q/TNF-related protein (CTRP) family and is 
also known as CTRP15. It is more abundant in 
muscle than in circulation. Myonectin expression 
is stimulated by exercise and nutrients. It promotes 
fatty acid uptake in cultured adipocytes and 
hepatocytes and inhibits circulating free fatty 
acid levels in mice.[59,60] A study has shown 
that circulating myonectin levels are significantly 
reduced in T2D patients compared to controls.[61]

In addition, another study found lower serum 
myonectin concentrations in T2D patients 
compared to healthy controls. Further studies 
showed that T2D and serum myonectin were 
correlated and that T2D patients with diabetic 
nephropathy had lower serum myonectin than 
those without diabetic nephropathy. Based on 
these findings, the researchers concluded that 
serum myonectin can be used as a biomarker 
in the diagnosis and classification of diabetic 
nephropathy and can be used as a therapeutic 
target or a new drug for the treatment of T2D and 
diabetic nephropathy.[62]

It was found that dietary control, in addition 
to exercise, increased the expression level of 
myonectin in both the soleus and the liver, 
resulting in an increase in fatty acid transporter 
levels. This combination has been shown to have 

a positive effect on lipid metabolism, which is 
expected to play a therapeutic role in obesity.[63]

Fibroblast Growth Factor 21 (FGF21)

Fibroblast growth factor 21 is a signaling 
protein found in many tissues induced by stress.
[64,65] After an autophagy deficiency, mitochondrial 
dysfunction increases FGF21 levels to protect 
against obesity caused by diet and insulin resistance, 
and also, in mitochondrial respiratory chain 
deficiency, there is an increase in mitochondrial 
activity with an increase in FGF21.[66,67]

It was hypothesized that the pharmacological 
benefits of FGF21 in improving lipid profile, 
hepatic fat fraction, and markers of liver fibrosis 
would increase its potential for therapeutic 
application in obesity-related comorbidities other 
than hyperglycemia.[68]

In a study in which exogenous FGF21 was 
administered, the potential application of FGF21 
as an antiobesity molecule was shown to work.[69]

CHALLENGES FOR MYOKINE 
THERAPEUTICS

First, there are some difficulties associated 
with the discovery phase of myokines. Among 
these, exercise biology is affected by various 
factors, and working with small sample amounts 
can be listed.[70]

Since myokines are released from muscle 
at concentrations of picomole and femtomole, 
it was assumed that their concentration in 
serum could not be determined.[71,72] However, 
the advancement of modern technologies has 
prevented these thoughts. Technologies such as 
gene ontology, cell culture models, stable isotope 
labeling with amino acids, and immunostaining 
have provided this.[73,74]

Their protein structure and physiochemical 
instability hinder the therapeutic application 
of myokines. Their short half-life in plasma, 
toxicity, and immunogenicity are also factors 
to consider.[75] Due to the presence of myokine 
receptors in various parts of the body, cell and 
tissue specificity should be ensured in order to 
prevent possible side effects. Providing drug 
delivery with nanotechnology can avoid this 
limitation.[76,77]

In conclusion, it is clear that myokines could 
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be used in so many conditions due to their 
actions in metabolic pathways, as long as the 
effects and consequences are well understood. 
The usage of myokines as therapeutics looks 
bright in the future since they regulate lipid 
metabolism, muscle development, and immune 
responses. Moreover, they can be used as 
biomarkers for several diagnoses; myostatin 
for cachexia, IL-6 for adult and juvenile 
dermatomyositis, irisin for muscle dysfunction, 
and myonectin for diabetic nephropathy.
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